
JOURNAL OF COMPUTATIONAL PHYSICS 65, 37%385 (1986)

Blending Method for Grid Generation

JOHN STEINHOFF

Department of Engineering Scierlce and Mechanics, The University of Tennessee
Space Institute, Tullahoma, Tennessee 37388

Received April 22, 1985

A systematic procedure is presented for synthesizing a complex computational grid out of a
number of simpler “elementary” grids. This method is useful when a grid is required for a
region which, though complex, consists of a number of simpler sub-regions. Frequently, in
such cases, validated grid generation methods already exist for the sub-regions, such as the
individual lifting surfaces of an airplane. The procedure presented allows a smooth complex
grid to be generated which becomes exactly equal to each elementary grid as the surface
corresponding to that elementary grid is approached. In this way, the existing generation
methods do not have to be changed and can be used as “black boxes,” whether they are
algebraic, partial differential equation based, or just given numerically. A number of examples
are described in detail. c, 19F6 Academic Press. Inc.

1. INTRODUCTION

In many cases where a smooth computational grid is required, the boundary of
the computational domain can be decomposed into a number of pieces, each of
which is fairly simple. We suppose that an adequate grid can be easily generated for
each of these pieces, if considered by itself, and describe a method for blending these
“elementary” grids into one smooth composite grid which has all of the pieces as its
boundary. Examples where this technique can be used include external flow over an
entire aircraft, where simple methods exist for generating grids individually over
each of the lifting surfaces and the pieces of the body. Other examples include inter-
nal flows where a number of ducts or tubes join, and methods exist for generating
grids for each element taken separately. An important feature of the concept is that
it can be used recursively. Composite subgrids can first be formed from elementary
grids, using the method, then, the same method can be used to form larger com-
posite grids out of these individual subgrids. If algebraic methods are used to form
each elementary grid, which can often be done since each piece is simple, then the
entire grid generation procedure is algebraic, since the blending is non-iterative and
involves no partial differential equation solutions. Accordingly, where applicable, it
is a fast method suitable for interactive use. Also, if a partial differential equation is
to be solved for some physical quantity and an iterative method is used to solve a
set of discrete equations on the grid, which is usually the case, then at each iteration
the grid can be quickly regenerated and there is no need to store the entire grid

370
0021-9991,‘86 $3.00
Copyright Scj 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

BLENDING METHOD FOR GRID GENERATION
‘% 7 7
3:i

system. This feature can be especially important for large 3-dimensional problems.
This method is very different from other algebraic methods, such as those of
Eiseman Cl]. Each elementary grid is taken to be previously determined, enher by
algebraic methods, partial differential equation solution [I], or any other means.
These grids can be defined over the entire space, rather than just on surfaces as in
“transfinite interpolation” schemes.

An important feature of the method is that it aliows the grid designer to use
software packages and methods already developed or being developed by others
(which can be quite sophisticated and complex) for the elementary grids about each
piece of the problem. These can be used as “black boxes,” and after each elemenrary
grid is generated the grid designer can blend them together. AIso, after a composite
complex grid is generated, if one of the pieces is later modified, only the single new
elementary grid need be recomputed and blended intc the composite grid.

In this paper two types of problems will be treated. Iu the first, the elementary
pieces of the boundary are physically separated, and in the second they are con-
tiguous. The use of the method will be illustrated with several representative 2-
dimensional examples. There is no conceptual difference between 2- and LLdimen,-
sional formulations and results of current work on Sdimensional grids wilt be
presented in a subsequent paper.

Since the method is local, and each piece only influences the grid in its vicinity,
locai methods of controlling the grid can be formulated. This could be required: for
example. if reso!ution were inadequate or if grid lines were to cross. Some of these
methods will be described. It will be seen that advantages of the method include
simpiiciry and speed, even for complex geometries isadvantages include the lack
of guarantees against line crossing (although this can be made uniikely) and the
requirement that each elementary grid locally have the same topology.

2. THE BASIC METHOD

Consider a set of N grids, each spanning the same computational space and
approximately the same physical space. For simplicity. we define the computational
coordinates to be just the (integer) indices of the grids, Thus, in 11 dimensions we
have an n component vector, r,Jl) (z (s,,(l), y,>,(1), z;,(I)) for ra=3) defined on
each grid (labeled m) as a function of the indices 1 (= (i. I3 k) for ia = 3). It is impor-
tant to think of the n components of rm as ordinary smooth functions defined in the
computational (I) space. Defining non-negative -weighting functions P7;(!). the
physical coordinates of the composite grid are then simply weighted sums of :hose
of the elementary grids:

r,(I) = 1 P”(1) r,,(i)
[m

The weighting functions are, in general, functions of ali of the indices 1, and are a
function of how close the point I is to the elementary surface segments. When !

312 JOHN STEINHOFF

approaches some surface segment, say m, , then P(I) must approach 1 and all the
other P’s must approach 0 since there we must have

r,(l) -+ r,,(l).

Some of the “art” of using the method resides in the determination of the
functions P”(I). Since values of r,(l) which define smooth grids are determined
separately about each elementary surface, the P”(1) do not have to do as much
work as in an interpolation method where they typically completely determine one
of the coordinates. In the examples to be presented in the next sections, it will be
seen that very simple functions are sufficient. The main problems arise when grids
must be blended with very different values of r in certain regions of 1 near an
elementary surface. Then, care must be taken that a number of derivatives of P”(I)
are 0 as I approaches the elementary surface (m,), in addition to the value of P”‘(1)
approaching 1. As more derivatives are made to go to 0, the region in I space,
where r,(l) approaches rm, becomes larger.

3. EXAMPLE ~-CASCADE “C” TRANSFORMATION

This simple example involves a single weighting function. The two surfaces to be
fitted by the computational grid are the aifoil surface, where normal velocity is set
to zero, and the outer surface, where periodic conditions are imposed at the sides
and far field conditions at the ends. A transonic potential flow solution was to be
computed on the grid using a multigrid algorithm’ [3].

First, a vertical shearing is used to approximately straighten the airfoil. After the
grid is generated this shearing will be applied in reverse to all the grid points so that
the initial airfoil is recovered. The shearing function (of X) is a straight line in front
of the leading edge and behind the trailing edge, matching the slope and position of
the mean camber line there, and is an interpolating cubic function of x in between.
This function is simply subtracted from the initial airfoil coordinates and, after the
mappings are complete, added back to each of the grid points to generate the final
grid. After the initial shearing, a ‘C” mesh is generated about the airfoil (Fig. 1).
(The open trailing edge is a continuation of the initially rounded trailing edge and
is designed to simulate viscous effects.) This mapping involves a square root trans-
formation about a point inside the leading edge region and a shearing. It is a stan-
dard mapping for aircraft airfoils and is described in detail in [4]. This is the first
grid. It has good properties near the airfoil surface but obviously is not suitable in
the outer region for imposing periodic boundary conditions.

The second grid consists of a long Cartesian grid with parallel top and bottom
boundaries, capped with a semicircular piece (see Fig. 2). It has the same C mesh

‘The development of the computer code for the cascade solution was supported by NASA Lewis
Research Center Grant NASA NAG 3-398.

BLENDING METHOD FOR GRID GENERATION 3-73

FIG. 1. Inner grid GOT sheared cascade airfoii.

topology as the grid in Fig. 1, but is ideally suited for imposing periodic boundary
conditions on the top and bottom segments and far-field conditions at rhe ends.
The internal grid lines join the upper and lower boundaries orthogonally, as
required if the grid is to be smooth when continued periodically (even when the
shearing function is added back j. The only problem with the grid is that there is no
airfoil.

Our objective is to compute a grid that approaches grid 1 along one line (I = :),
and grid 2 along the other three (j=j,,,. i = 1 and t = l,,,) (see Fig. 3). Since there

4j

FIG. 2. Outer grid for sheared cascade airfoil.

374 JOHN STEINHOFF

streamlines

I! L

olrfoil

FIG. 3. Computational grid for cascade.

are only two elementary grids, we have here a simple form for r,.(l) with only a
single weighting function p(l):

r,(l) =N) r,(l) + (1 -P(l)) r2(1).

The constraints on p(l) are:

1. p(l) + 1 as j+ 1, i not close to 1 or i,,,.
2. p(l)-+0 asj+j,,,, or i-, 1 or i-ii,,,.

The main problem here concerns the points near the leading edge of the airfoil
for j near 1. If p is not very close to 1 for j= 2, 3,... then the (distant) points from
grid 2 will be significantly included and the final rC values will be very different from

ti
i’

FIG. 4. Blended cascade grid.

BLENDING METHOD FOR GRID GENERATION

/

/

I

/--

FIG. 5. Final cascade grid without shearing.

those for j = 1 (where p is exactly 1). There will thus be a large grid spacing between
points with j= 1 and j= 2, as well as between j = 2 and .j= 3. etc. Accordingfy, we
choose a function with several vanishing derivatives at j= 1:

p(l) = il -a(j)] b(i)

a(j) = a2 +[1 - cos(7rx;;

b(i) = $1 - cos(7$)]

x(j) = (j- 1);A

/I(i)=min(d, i- I, i,,,-ij:d

where A is a length scale, set equal to (j,,, - 1).

FIG. 6. Coarse cascade grid.

376 JOHN STEINHOFF

0.0 11 .,,.,,..I,,,....,,:.,.,,..,,!.,.,,.,,, I ,..,.,,..,
0 LB 20 30 40 50

ITERATION NO

FIG. 7. Circulation development for cascade solution.

The resultant grid is depicted in Fig. 4 and in Fig. 5 with additional stretching in
the x direction and the shearing function added. A coarser grid with 1 the number
of cells in each direction is presented in Fig. 6 for clarity. The convergence of our
finite volume multigrid method for a transonic shock-free case is presented in Fig. 7
for circulation development and Fig. 8 for average residual decay (one fine grid
(128 x 16) iteration per multigrid cycle was used with a total of 5 grids). Besides
cascades, this mapping technique would obviously be useful for wind tunnel boun-
dary conditions.

4. EXAMPLE Z-WING-CANARD

As in the last example, there are “elementary” boundaries which are separated in
both computational and physical space. Here, we choose an “H” grid elementary

ITERATION NO

FIG. 8. Residual decay for cascade solution.

BLENDING METHOD FOR GRID GENERATION

I I I I I I I I I I I I I I

I
i-

FIG. 9. Computational wing/canard grid.

mapping for both the canard and wing. A detailed study of this mapping was
presented in [5] for a single airfoil, where it was shown that a particular transfor-
mation can be used to eliminate the singularity which normally arises at the leading
edge in this case. A compressible flow problem was solved on this grid and the
solution was shown to be accurate once this singularity was removed.

The objective here is to map the wing-canard and outer boundary to a com-
putational grid depicted in Fig. 9, using an elementary H mesh for the canard
depicted in Fig. 10 and for the wing in Fig. Il. In this figure, the canard is at zero
relative angle of attack. For non-zero relative angle of attack, the entire elementary
canard grid is just rotated in physical space before blending.

In this case there are four starting grids: an “outer” Cartesian one associated with
the outer boundaries, a wing and a canard grid, and an inner Cartesian grid.

The basic plan in this case is to generate a wing/canard inner grid with fairly
uniform grid size (except near the wing and canard), and then to blend this with ar,

FIG. 10. Elementary grid for canard airfoil.

378 JOHN STEINHOFF

Y t

FIG. 11. Elementary grid for main airfoil.

“outer” grid with much larger spacing to develop far-field stretching. The elemen-
tary canard grid is labeled m = 1, and the elementary wing grid, m = 2. These are
first blended with a fine “inner” Cartesian grid (m = 3) to get intermediate com-
posite grids (labeled 13, 23). These two are then blended to get an inner
wing/canard grid, labeled 123. Finally, to provide far field stretching, this grid is
blended with an elementary Cartesian grid (label 4) which has much larger grid
spacing.

First, an “inner” canard (wing) grid is computed by blending the canard (wing)
and inner Cartesian grid. The first blendings (13, 23) are done with a weighting
function

p”(l) = +[1 - cos(7carn)] $[1 - cos(7rp”1)]

where HZ = 1 for canard and 2 for wing, and

cF(i) = 0, i < ir

P(i)= (i-ir)/(i;“-ir), i;;’ < i -c i;r

a”‘(i) = 1, i’” < i < i* I-- 12

a’“(i) = (iy - i)/(i;‘- iy), i’” < i < i” 2 3

c?(i) = 0, i>iy

The function p”(j) is defined in the same way, with ir ctjr, k = 0, 1,2, 3. Then, for
the inner (composite) canard and wing grids (r13(l), rz3(l)),

r,J =PY) r,(l) + Cl -P’V)I r3(V

BLENDING METHOD FOR GRID GENERATION 375

where r!(I), r?(l), and r,(l) are the canard, wing, and irmer Cartesian grids, respec-
tively. In the grids ~~~(1) and r2.(1) the canard or wing lies in the region

iy < i < i’; ; jy <j <j;?,

In our case J ‘7 =j’;: + 1 and the line .j=j’; forms the lower surface and j=jy the
upper surface for P; > i > i;“. The two lines coincide in physical space for i < i;! and
i > i’:‘. Also, the original element canard or wing grid !ies in the region

The generation of the (13) and (23) grids is just a small algebraic step in the
overall grid generation procedure: the elementary inner grid (3) is just a Cartesian
grid and a simple formula is used for the coordinate values. These grids arc not
separately stored-the coordinate values are used as they are computed in the next
grid blending step. In the rest of this section it will be assumed that ii < I:; ii < if:
iI < iz, but ii not necessarily <if (the canard and wing may overlap in i);similar!y
that j: <j;; j: >jf ; jt <j, * but j: not necessarily >ji.

The composite inner grid, r,,,(l), is defined to approach s,,(i) as j-j: (j<;Ai;
and to approach r,,(l) as ,j -jt (j >jg). For j > ‘1. ,J; (upper part of grid) we have

r,,,(l) =r,Ai) t ;: I

while for,j<jf (lower part of grid),

rd) = rdl!.

We first define the distance functions

z,(l) = max(O,ji -j)

z*(l)= max(O,j-ji).

The function z,(l) is 0 where conditions (1) applies, and ~~(1) is 0 where condition
(2) applies. We then define a single distance function tz) that is 0, where (1) applies
and 1 where (2) applies:

Then, we tinaily have

where

r,23(1) =piz) r2J) + Cl -p(z)i r,,(l),

p(z) = I[1 - cos(71z)].

The grid rIJ3 is shown in Fig. 12.

380 JOHN STEINHOFF

L
X- id

FIG. 12. Blended wing/canard grid (unstretched),

The purpose of the final blending is to stretch rIz3 in the far field. We want the
final grid, r,(l), to equal r,,,(l) inside the region

it <iii;; Jl \J ~Jz- ‘2< ‘< ‘1

Defining grid 4 to lie in the region il d id i; ; j: <j < j;;

zl= [(max(O, i-ii, i~-ij)‘+(max(0,j-j~,j:-j))2]1i2

z2=[(min(i-i~,i~-i))‘+(min(j-j;‘,j~-j))2)]”’,

z= zl/(zl + z,),

we have the final grid,

r,U)=p(z) r,(l) + Cl -PI r12A1L

where p(z) is defined as above. This is shown in Fig. 13 and the inner part expanded

yt tj

FIG. 13. Final wing/canard grid.

BLENDING METHOD FOR GRID GENERATION 381

x- i-

FIG. 14. Inner portion of final wing/canard grid.

in Fig. 14. It can be seen that the stretching is more efficient than with the conven-
tional product form where the grid lines are continued to the outer boundary with
the same spacing, as shown in Fig. 15.

II should be noted that there are a large number of ways of assembling rk
elementary grids into the final grid. We chose here a simple step-by-step method
which is not necessarily the most efficient bnt perhaps is more instructive. Also,
even though the intermediate grids were presented separately, they need no: be
generated separately. Even with the blending used here. all of the blending steps
could be done together for each grid point (i.j) before computing the next pain:, so
that only one pass through the grid need be made, and no intermediate grids need
be generated. Some of these intermediate grids are only shown for clarity.

Y-B- i-a

FIG. 15. Wing/canard grid with conventional stretching

382 JOHN STEINHOFF

5. EXAMPLE 3-CoN~rcuous SEGMENTS

Here, we treat a set of smooth line segments as boundaries, so that the com-
putational region is bounded by generalized polygons in physical space. If each
elementary surface is a straight line, we choose each elementary grid to be a Car-
tesian grid; if it is curved, we choose another, simple grid that is curved. These are
oriented so that a segment of one of the coordinate lines coincides with the given
boundary segment. An example of the (block) type of grid that we treat in com-
putational space is shown in Fig. 16. Each segment of the inner polygon as well as
the outer boundary rectangle corresponds to a smooth line in physical space. Also,
either the values of i or the values ofj at the end points of each segment are equal,
so that the segments are either horizontal or vertical in computational space.

The spacing of each elementary grid is determined by the spacing parallel to the
boundary ssgment, and normal to it. The parallel spacing, ds, is just the physical
length of the segment divided by the number of cells along it. For a straight
segment;

As= [(.vz-x,)‘+(1!2-~,)2]‘lZjllZZ-n,l

where the subscript (1) refers to one end of the segment and (2) to the other, and II
is either i or j. (This assumes that there is uniform grid spacing along the segment,
which is not necessary for our method but is taken for simplicity.) The normal
spacing is input externally for each segment. Also, the i andj values of the segments
as well as the boundaries are the same in each elementary grid. That is, each
elementary grid has the same i, j limits but different values of x and y at each point.

FIG. 16. Computational grid for automobile grid.

BLENDING METHOD FOR GRID GENERATION 383

These values of x and y lie along a different elementary segment (in. physical space)
for each grid, for the appropriate values of i and j. For a curved segment we can, for
example, start with a straight segment, generate the grid as above, and add a shear-
ing (to form the curved segment) to the entire Cartesian sub-grid as well as to the
boundary segment. Other methods can also be used to generate the subgrids.

As we approach some segment (k) in I = (i, j) space, the composite grid, rC (r)
must approach that particular elementary grid, r,(l). Thus, we have

r,(L j =
I

1 P”‘(l) r,,,(l)

We choose a distance function from point 1 to each segment similar to that in the
last example:

2’“2= [(max((), j-i?, jy-j)j’+ (max(O,j-j;;,j, -ej,w))3]1’2;

where we take
i”’ < i’” . 1’2, .i:” q.

Each 2” vanishes on segment nz. We then generalize the formulae of the last secrion
to N segments instead of two. We define a “‘global” distance function for each
segment that is I when 1 approaches the segment (P + 0) and 0 when 1 approaches
any other segment (I’“‘-+ 0, nfZ # ml):

Th’en, we simply have

The composite grid resulting from applying these formulae to a particular set of
segments is shown in Fig. 17, and an expanded view of the inner several grid hn.es

X- id

FIG. 17. Automobile grid

384 JOHN STEINHOFF

Y t

X- i--t

FIG. 18. Inner portion of automobile grid.

in Fig. 18. In this example all segments are straight except one, which is a circular
arc. Although the spacing along each segment is constant (equal to the segment
length in physical space divided by the length in computational space) the normal
spacing is not: The cell height at the segment and on the grid line containing the
segment is half that of the cells away from the segment, for added accuracy at the
boundary. The code which generated these grids is less than 200 lines long, even
though it can treat a number of separate polygons (the outer boundary is treated as
just another polygon).

For generalization of this mapping, other boundary conforming elementary grids
can be used instead of the simple ones shown here. Also, grid bunching near and
normal to the segments can easily be implemented. In this case, a non-uniform
spacing along each segment should be used that approximately matches the
variable grid cell height normal to neighbouring segments.

6. CONCLUSION

A method of grid generation has been described that can be used to blend a num-
ber of elementary grids together into a smooth composite grid. If these elementary
grids have desirable properties near a set of grid boundaries, such as orthogonality,
then the composite grid can also be made to have them. This can be especially
useful when designing a grid for a complex object such as an airplane, where
methods already exist for generating good grids about each of the components. The
method is computationally fast and, depending on the elementary grids, can be
coded to recompute algebraically the entire grid for each iteration of some other
solution scheme, which requires the grid. In these cases the full grid need not be
stored in the computer, which can be an advantage in large 3-dimensional com-
putations.

An additional feature is the recursive property, that allows more complex grids to
be generated from simpler ones. This also allows “patches” to be blended into
regions where the original composite grid has undesirable properties, such as

BLENDING METHOD FOR GRID GENERATION 385

excessive skewness or “folding over.” Also, as described, simple unified methods of
treating contiguous surface exist, as well as simple methods of refining the grid near
these surfaces.

Although we have described some examples, the true usefulness of this meth.od
will only become apparent after it has been utilized in a large number of more com-
plex cases and modifications are found to cure the many problems that are hkeiy to
arise.

ACKNOWLEDGMENTS

The author would like to thank Mr. K. Ramachandran for generating the computer plots prescnred
and Professor K. C. Reddy for making helpful comments concerning the manuscript.

REFERENCES

1. P. R. EISENMAN, “Grid Generation for Fluid Mechanics Computations.” Annual Reviews 9f ?!::id
Mechanics, Vol. 17 (Annual Reviews, Palo Alto, 1985), p. 487.

2. J. F. THOMPSON, “Elliptic Grid Generation,” Numerical Grid Generation, edited by J. F. Thompson
(North-Holland, New York, 1982). p. 79.

3. A. JAMESON, AND D. A. CAUGHEY, in Proceedings of the Third AMA Conference on Computatlonai
Fluid Dynamics, Albuquerque, NM, 1917, p. 35; A. JAMESON, in Proceedings of Fourth AKAA Cm-
ference on Computational Fluid Dynamics, Williamsburg, VA, 1979, p. 121.

1. .4. JAMESON, Commun. Pure Appi. Math. 21, 283 (1974).
5. It. B. FELZ, AND J. S. STEINHOFF, in Proceedings of the ASME Winter Meeting on Compu:ers in Fllo:~~

Predictions and Fluid Dynamics Experiments, Washington, D. C.. 198 I, p. 21.

